Part Number Hot Search : 
SDR955MZ BA3530FS 42000 GD4027 HMC221A PMBFJ310 1209SH UDZS22B
Product Description
Full Text Search
 

To Download HYMD512M646DFP8-D43 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 200pin DDR SDRAM SO-DIMMs based on 512Mb D ver. (FBGA)
This Hynix unbuffered Small Outline, Dual In-Line Memory Module (DIMM) series consists of 512Mb D ver. DDR SDRAMs in 60 ball FBGA packages on a 200pin glass-epoxy substrate. This Hynix 512Mb D ver. based unbuffered SO-DIMM series provide a high performance 8 byte interface in 67.60mm width form factor of industry standard. It is suitable for easy interchange and addition.
FEATURES
* * * * * * * JEDEC Standard 200-pin small outline, dual in-line memory module (SO-DIMM) Two ranks 128M x 64 organization 2.6V 0.1V VDD and VDDQ Power supply for DDR400, 2.5V 0.2V for DDR333 and below All inputs and outputs are compatible with SSTL_2 interface Fully differential clock operations (CK & /CK) with 133/166/200MHz DLL aligns DQ and DQS transition with CK transition Programmable CAS Latency : DDR266(2.5 clock), DDR333(2.5 clock), DDR400(3 clock) * * * * * * * Programmable Burst Length 2 / 4 / 8 with both sequential and interleave mode Edge-aligned DQS with data outs and Center-aligned DQS with data inputs Auto refresh and self refresh supported 8192 refresh cycles / 64ms Serial Presence Detect (SPD) with EEPROM Built with 512Mb DDR SDRAMs in 60 ball FBGA packages All lead-free products (RoHS compliant)
ADDRESS TABLE
Organization 1GB 128M x 64 Ranks 2 SDRAMs 64Mb x 8 # of DRAMs 16 # of row/bank/column Address 13(A0~A12)/2(BA0,BA1)/11(A0~A9,A11) Refresh Method 8K / 64ms
PERFORMANCE RANGE
Part-Number Suffix Speed Bin CL - tRCD- tRP CL=3 Max Clock Frequency CL=2.5 CL=2 -D431 DDR400B 3-3-3 200 166 133 -J DDR333 2.5-3-3 166 133 -H DDR266B 2.5-3-3 133 133
Note: 1. 2.6V 0.1V VDD and VDDQ Power supply for DDR400 and 2.5V 0.2V for DDR333 and below
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsibility for use of circuits described. No patent licenses are implied. Rev. 1.0 / June 2007 1
11
200pin DDR SDRAM SO-DIMMs ORDERING INFORMATION
Part Number
HYMD512M646D[L]FP8-D43/J/H
Density
1GB
Organization
128M x 8
# of DRAMs
16
Material
Lead-free1
DIMM Dimension
67.60 x 31.75 x 3.8 [mm3]
Note: 1. The "Lead-free" products contain Lead less than 0.1% by weight and satisfy RoHS - please contact Hynix for product availability. * These Products are built with HY5DU124(8,16)22D[L]FP the Hynix DDR SDRAM component
Rev. 1.0 / June 2007
2
11
200pin DDR SDRAM SO-DIMMs PIN DESCRIPTION
Pin CK0, /CK0 /CS0, /CS1 CKE0, CKE1 /RAS, /CAS, /WE A0 ~ A12 BA0, BA1 DQ0~DQ63 CB0~CB7 DQS0~DQS17 DM0~7 VDD /RESET Pin Description Differential Clock Inputs Chip Select Input Clock Enable Input Commend Sets Inputs Address Bank Address Data Inputs/Outputs Data Strobe Inputs/Outputs Data Strobe Inputs/Outputs Data-in Mask Power Supply Reset Enable VDDQ VSS VREF VDDSPD SA0~SA2 SCL SDA WP VDDID DU NC FETEN Pin Pin Description DQs Power Supply Ground Reference Power Supply Power Supply for SPD E2PROM Address Inputs E2PROM Clock E2PROM Data I/O Write Protect Flag VDD Identification Flag Do not Use No Connection FET Enable
PIN ASSIGNMENT
Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Name VREF DQ0 VSS DQ1 DQS0 DQ2 VDD DQ3 NC /RESET VSS DQ8 DQ9 DQS1 VDDQ CK1* /CK1* VSS DQ10 DQ11 CKE0 VDDQ DQ16 DQ17 DQS2 VSS A9 DQ18 A7 VDDQ DQ19 Pin 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 Name A5 DQ24 VSS DQ25 DQS3 A4 VDD DQ26 DQ27 A2 VSS A1 CB0* CB1* VDD DQS8 A0 CB2* VSS CB3* BA1 Key DQ32 VDDQ DQ33 DQS4 DQ34 VSS BA0 DQ35 DQ40 Pin 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 Name VDDQ /WE DQ41 /CAS VSS DQS5 DQ42 DQ43 VDD /CS2* DQ48 DQ49 VSS CK2* /CK2* VDDQ DQS6 DQ50 DQ51 VSS VDDID DQ56 DQ57 VDD DQS7 DQ58 DQ59 VSS NU SDA SCL Pin 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 Name VSS DQ4 DQ5 VDDQ DM0,DQS9 DQ6 DQ7 VSS NC NC NC VDDQ DQ12 DQ13 DM1,DQS10 VDD DQ14 DQ15 CKE1 VDDQ BA2* DQ20 A12 VSS DQ21 A11 DM2,DQS11 VDD DQ22 A8 DQ23 Pin 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 Name VSS A6 DQ28 DQ29 VDDQ DM3,DQS12 A3 DQ30 VSS DQ31 CB4* CB5* VDDQ CK0 /CK0 VSS DM8,DQS17 A10 CB6* VDDQ CB7* key VSS DQ36 DQ37 VDD DM4,DQS13 DQ38 DQ39 VSS DQ44 Pin 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 Name /RAS DQ45 VDDQ /CS0 /CS1 DM5,DQS14 VSS DQ46 DQ47 NC VDDQ DQ52 DQ53 A132, NC VDD DM6 DQ54 DQ55 VDDQ NC DQ60 DQ61 VSS DM7,DQS16 DQ62 DQ63 VDDQ SA0 SA1 SA2 VDDSPD
Note: 1. * : These pins are not used in this module. 2. Pin 167 is NC for 256MB, 512MB, and 1GB, or A13 for 2GB module.
Rev. 1.0 / June 2007
3
11
200pin DDR SDRAM SO-DIMMs FUNCTIONAL BLOCK DIAGRAM 1GB, 128M x 64 Unbuffered SO-DIMM : HYMD512M646D[L]FP8
/CS1 /CS0 DQS0 DM0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQS1 DM1 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DQS2 DM2 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DQS3 DM3 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31
BA0-BA1 A0-A12 CKE1 /RAS /CAS CKE0 /WE DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 /CS DQS
DQS4 DM4 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DQS5 DM5 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DQS6 DM6 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQS7 DM7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63
DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS DM I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 /CS DQS
D0
I/O3 I/O4 I/O5 I/O6 I/O7
D8
D4
D1 D12 2
D1
D9
D5
D13
D2
D10
D6
D14
D3
D11
D7
D15
BA0-BA1 : SDRAMs D0-D15 A0-A12 : SDRAMs D0-D15 CKE : SDRAMs D8-D15 /RAS : SDRAMs D0-D15 /CAS : SDRAMs D0-D15 CKE : SDRAMs D0-D7 /WE : SDRAMs D0-D15 SCL WP A0 A1 A2 VDD SPD Serial PD SDA
VDD /VDDQ
SPD DO-D15 DO-D15 DO-D15
Strap:see Note 4
VREF VSS VDDID
SA0 SA1 SA2
Note : 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, DM/DQS resistors : 22 Ohms ? 5%. 4. VDDID strap connections (for memory device VDD, VDDQ) : STRAP OUT (OPEN) : VDD = VDDQ STRAP IN (VSS) : VDD VDDQ
CK0 /CK0 CK1 /CK1 CK2 /CK2
8 loads 8 loads 0 loads
Rev. 1.0 / June 2007
4
11
200pin DDR SDRAM SO-DIMMs ABSOLUTE MAXIMUM RATINGS1
Parameter Operating Temperature (Ambient) Storage Temperature Voltage on VDD relative to VSS Voltage on VDDQ relative to VSS Voltage on inputs relative to Vss Voltage on I/O pins realtive to Vss Output Short Circuit Current Soldering Temperature Time Symbol TA TSTG VDD VDDQ VINPUT VIO IOS TSOLDER Rating 0 ~ 70 -55 ~ 150 -1.0 ~ 3.6 -1.0 ~ 3.6 -1.0 ~ 3.6 -0.5 ~3.6 50 260 10
o
Unit
o
C
oC
V V V V mA C Sec
Note: 1. Operation at above absolute maximum rating can adversely affect device reliability
DC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)
Parameter Power Supply Voltage (DDR 200, 266, 333) Power Supply Voltage (DDR 400) Power Supply Voltage (DDR 200, 266, 333) Power Supply Voltage (DDR 400) Input High Voltage Input Low Voltage Termination Voltage Reference Voltage Input Voltage Level, CK and CK inputs Input Differential Voltage, CK and CK inputs V-I Matching: Pullup to Pulldown Current Ratio Input Leakage Current Output Leakage Current Output High Current Normal Strength (min VDDQ, min VREF, min VTT) Output Driver (VOUT=VTTae0.84) Output Low Current (min VDDQ, max VREF, max VTT) Half Strength Out- Output High Current put Driver (min VDDQ, min VREF, min VTT)
(VOUT=VTTae0.68)
Symbol VDD VDD VDDQ VDDQ VIH VIL VTT VREF VIN(DC) VID(DC) VI(RATIO) ILI ILO IOH IOL IOH IOL
Min 2.3 2.5 2.3 2.5 VREF + 0.15 -0.3 VREF - 0.04 0.49*VDDQ -0.3 0.36 0.71 -2 -5 -16.8 16.8 -13.6 13.6
Typ. 2.5 2.6 2.5 2.6 VREF 0.5*VDDQ -
Max 2.7 2.7 2.7 2.7 VDDQ + 0.3 VREF - 0.15 VREF + 0.04 0.51*VDDQ VDDQ+0.3 VDDQ+0.6 1.4 2 5 -
Unit V V V V V V V V V V uA uA mA mA mA mA
Note 2 1 1,2 3 4 5 6 7 8
Output Low Current (min VDDQ, max VREF, max VTT)
Notes: 1. VDDQ must not exceed the level of VDD. 2. For DDR400, VDD=2.6V 0.1V, VDDQ=2.6V 0.1V 3. VIL (min) is acceptable -1.5V AC pulse width with < 5ns of duration. 4. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the dc level of the same. Peak to peak noise on VREF may not exceed 2% of the DC value. 5. VID is the magnitude of the difference between the input level on CK and the input level on /CK. 6. The ratio of the pullup current to the pulldown current is specified for the same temperature and voltage, over the entire temperature and voltage range, for device drain to source voltages from 0.25V to 1.0V. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process variation. The full variation in the ratio of the maximum to minimum pullup and pulldown current will not exceed 1/7 for device drain to source voltages from 0.1 to 1.0. 7. VIN=0 to VDD, All other pins are not tested under VIN =0V. 8. DQs are disabled, VOUT=0 to VDDQ.
Rev. 1.0 / June 2007
5
11
200pin DDR SDRAM SO-DIMMs IDD SPECIFICATION AND CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V) 1GB, 128M x 64 Unbuffered SO-DIMM: HYMD512M646D[L]FP8
Symbol Test Condition One bank; Active - Precharge; tRC=tRC(min); IDD0 tCK=tCK(min); DQ,DM and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle One bank; Active - Read - Precharge; Burst Length=2; IDD1 tRC=tRC(min); tCK=tCK(min); address and control inputs changing once per clock cycle IDD2P All banks idle; Power down mode; CKE=Low, tCK=tCK(min) /CS=High, All banks idle; tCK=tCK(min); CKE= High; IDD2F address and control inputs changing once per clock cycle. VIN=VREF for DQ, DQS and DM IDD3P One bank active ; Power down mode; CKE=Low, tCK=tCK(min) /CS=HIGH; CKE=HIGH; One bank; Active-Precharge; IDD3N tRC=tRAS(max); tCK=tCK(min); DQ, DM and DQS inputs changing twice per clock cycle; Address and other control inputs changing once per clock cycle Burst=2; Reads; Continuous burst; One bank active; IDD4R Address and control inputs changing once per clock cycle; tCK=tCK(min); IOUT=0mA Burst=2; Writes; Continuous burst; One bank active; IDD4W Address and control inputs changing once per clock cycle; tCK=tCK(min); DQ, DM and DQS inputs changing twice per clock cycle tRC=tRFC(min) - 8*tCK for DDR200 at 100Mhz, IDD5 10*tCK for DDR266A & DDR266B at 133Mhz; distributed refresh IDD6 IDD7 CKE=<0.2V; External clock on; tCK =tCK(min) ing page for detailed test condition Normal Low Power 3360 80 48
3280 3200
Speed DDR400B DDR333 DDR266B
Unit
Note
1520
1440
1280
mA
1840
1680
1440
mA
160
mA
560
mA
720
mA
960
mA
2160
2000
1840
mA
2320
2160
1920
mA
2560
2400
2240
mA mA mA mA
Four bank interleaving with BL=4 Refer to the follow-
* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.
Rev. 1.0 / June 2007
6
11
200pin DDR SDRAM SO-DIMMs AC OPERATING CONDITIONS (TA=0 to 70 oC, Voltage referenced to VSS = 0V)
Parameter Input High (Logic 1) Voltage, DQ, DQS and DM signals Input Low (Logic 0) Voltage, DQ, DQS and DM signals Input Differential Voltage, CK and /CK inputs Input Crossing Point Voltage, CK and /CK inputs Symbol VIH(AC) VIL(AC) VID(AC) VIX(AC) Min VREF + 0.31 0.7 0.5*VDDQ-0.2 Max VREF - 0.31 VDDQ + 0.6 0.5*VDDQ+0.2 Unit V V V V 1 2 Note
Notes : 1. VID is the magnitude of the difference between the input level on CK and the input on /CK. 2. The value of VIX is expected to equal 0.5*V DDQ of the transmitting device and must track variations in the DC level of the same.
AC OPERATING TEST CONDITIONS (TA=0 to 70oC, Voltage referenced to VSS = 0V)
Parameter Reference Voltage Termination Voltage AC Input High Level Voltage (VIH, min) AC Input Low Level Voltage (VIL, max) Input Timing Measurement Reference Level Voltage Output Timing Measurement Reference Level Voltage Input Signal maximum peak swing Input minimum Signal Slew Rate Termination Resistor (RT) Series Resistor (RS) Output Load Capacitance for Access Time Measurement (CL) Value VDDQ x 0.5 VDDQ x 0.5 VREF + 0.31 VREF - 0.31 VREF VTT 1.5 1 50 25 30 Unit V V V V V V V V/ns pF
OUTPUT LOAD CIRCUIT
VTT
RT=50
Output Zo=50 VREF
CL=30pF
Rev. 1.0 / June 2007
7
11
200pin DDR SDRAM SO-DIMMs CAPACITANCE (TA=25oC, f=100MHz) 1GB : HYMD512M646D[L]FP8
Input/Output Pins A0 ~ A12, BA0, BA1 /RAS, /CAS, /WE CKE0, CKE1 /CS0, /CS1 CK0, /CK0, CK1, /CK1, CK2, /CK2 DM0 ~ DM7 DQ0 ~ DQ63, DQS0 ~ DQS7 Symbol CIN1 CIN2 CIN3 CIN4 CIN5 CIN6 CIO1 Min 50 50 36 36 30 10 10 Max 68 68 48 48 38 18 18 Unit pF pF pF pF pF pF pF
Rev. 1.0 / June 2007
8
11
200pin DDR SDRAM SO-DIMMs AC CHARACTERISTICS (note: 1 - 9 / AC operating conditions unless otherwise noted)
Parameter Row Cycle Time Auto Refresh Row Cycle Time Row Active Time Active to Read with Auto Precharge Delay Row Address to Column Address Delay Row Active to Row Active Delay Column Address to Column Address Delay Row Precharge Time Write Recovery Time Internal Write to Read Command Delay Auto Precharge Write Recovery + Precharge Time22 CL = 3 System Clock Cycle CL = 2.5 Time24 CL = 2 Clock High Level Width Clock Low Level Width Data-Out edge to Clock edge Skew Symbol tRC tRFC tRAS tRAP tRCD tRRD tCCD tRP tWR tWTR DDR400B Min 55 70 40 tRCD or tRASmin 15 10 1 15 15 2 (tWR/ tCK) + (tRP/tCK) 5 tCK tCH tCL tAC 0.45 0.45 -0.7 -0.55 tHP -tQHS min (tCL,tCH) Max 70K DDR333 Min 60 72 42 tRCD or tRASmin 18 12 1 18 15 1 (tWR/ tCK) + (tRP/tCK) 6 7.5 0.45 0.45 -0.7 -0.6 tHP -tQHS min (tCL,tCH) Max 70K DDR266A Min 65 75 45 tRCD or tRASmin 20 15 1 20 15 1 (tWR/ tCK) + (tRP/tCK) 7.5 7.5 0.45 0.45 -0.75 -0.75 tHP -tQHS min (tCL,tCH) Max 120K DDR266B Min 65 75 45 tRCD or tRASmin 20 15 1 20 15 1 (tWR/ tCK) + (tRP/tCK) 7.5 10 0.45 0.45 -0.75 -0.75 tHP -tQHS min (tCL,tCH) Max 120K DDR200 Min 70 80 50 tRCD or tRASmin 20 15 1 20 15 1 (tWR/ tCK) + (tRP/tCK) 8.0 10 0.45 0.45 -0.75 -0.75 tHP -tQHS min (tCL,tCH) Max 120K UNIT ns ns ns ns ns ns tCK ns ns tCK
tDAL
-
-
-
-
-
tCK
10 0.55 0.55 0.7 0.55 0.4 0.5
12 12 0.55 0.55 0.7 0.6 0.4 0.5
12 12 0.55 0.55 0.75 0.75 0.5 0.75
12 12 0.55 0.55 0.75 0.75 0.5 0.75
12 12 0.55 0.55 0.75 0.75 0.6 0.75 ns ns tCK tCK ns ns ns ns ns ns ns
DQS-Out edge to Clock tDQSCK edge Skew DQS-Out edge to DataOut edge Skew21 Data-Out hold time from DQS20 Clock Half Period19,20 Data Hold Skew Factor20 Valid Data Output Window tDQSQ tQH tHP tQHS tDV
tQH-tDQSQ
tQH-tDQSQ
tQH-tDQSQ
tQH-tDQSQ
tQH-tDQSQ
Rev. 1.0 / June 2007
9
11
200pin DDR SDRAM SO-DIMMs
- Continue
Parameter Data-out high-impedance window from CK,/CK10 Data-out low-impedance window from CK, /CK10 Input Setup Time (fast slew rate)14,16-18 Input Hold Time (fast slew rate)14,16-18 Input Setup Time (slow slew rate)15-18 Input Hold Time (slow slew rate)15-18 Input Pulse Width17 Write DQS High Level Width Write DQS Low Level Width Clock to First Rising edge of DQSIn DQS falling edge to CK setup time DQS falling edge hold time from CK DQ & DM input setup time25 DQ & DM input hold time25 DQ & DM Input Pulse Width17 Read DQS Preamble Time Read DQS Postamble Time Symbol DDR400B Min -0.7 -0.7 0.6 0.6 0.7 0.7 2.2 0.35 0.35 0.72 0.2 0.2 0.4 0.4 1.75 0.9 0.4 0 Max 0.7 0.7 1.25 1.1 0.6 0.6 7.8 DDR333 Min -0.7 -0.7 0.75 0.75 0.8 0.8 2.2 0.35 0.35 0.75 0.2 0.2 0.45 0.45 1.75 0.9 0.4 0 0.25 0.4 2 75 200 Max 0.7 0.7 1.25 1.1 0.6 0.6 7.8 DDR266A Min -0.75 -0.75 0.9 0.9 1.0 1.0 2.2 0.35 0.35 0.75 0.2 0.2 0.5 0.5 1.75 0.9 0.4 0 0.25 0.4 2 75 200 Max 0.75 0.75 1.25 1.1 0.6 0.6 7.8 DDR266B Min -0.75 -0.75 0.9 0.9 1.0 1.0 2.2 0.35 0.35 0.75 0.2 0.2 0.5 0.5 1.75 0.9 0.4 0 0.25 0.4 2 75 200 Max 0.75 0.75 1.25 1.1 0.6 0.6 7.8 DDR200 Min -0.8 -0.8 1.1 1.1 1.1 1.1 2.5 0.35 0.35 0.75 0.2 0.2 0.6 0.6 2 0.9 0.4 0 0.25 0.4 2 80 200 Max 0.8 0.8 1.25 1.1 0.6 0.6 7.8 UNIT
tHZ tLZ tIS tIH tIS tIH tIPW tDQSH tDQSL tDQSS tDSS tDSH tDS tDH tDIPW tRPRE tRPST
ns ns ns ns ns ns ns tCK tCK tCK tCK tCK ns ns ns tCK tCK ns tCK tCK tCK ns tCK us
Write DQS Preamble Setup Time12 tWPRES Write DQS Preamble Hold Time Write DQS Postamble Time11 Mode Register Set Delay Exit Self Refresh to non-Read command23 Exit Self Refresh to Read command Average Periodic Refresh Interval13,25
tWPREH 0.25 tWPST tMRD tXSNR tXSRD tREFI 0.4 2 75 200 -
Rev. 1.0 / June 2007
10
11
200pin DDR SDRAM SO-DIMMs
Notes: 1. All voltages referenced to Vss. 2. Tests for ac timing, IDD, and electrical, ac and dc characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. 3. Below figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics).
VDDQ 50
Output (VOUT)
30 pF
Figure: Timing Reference Load
4. AC timing and IDD tests may use a VIL to VIHswing of up to 1.5 V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK, /CK), and parameter specifications are guaranteed for the specified ac input levels under normal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(ac) and VIH(ac). 5. The ac and dc input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the ac input level and will remain in that state as long as the signal does not ring back above (below) the dc input LOW (HIGH) level. 6. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE < 0.2VDDQ is recognized as LOW. 7. The CK, /CK input reference level (for timing referenced to CK, /CK) is the point at which CK and /CK cross; the input reference level for signals other than CK, /CK is VREF. 8. The output timing reference voltage level is VTT. 9. Operation or timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 10. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level but specify when the device output is no longer driving (HZ), or begins driving (LZ). 11. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly. 12. The specific requirement is that DQS be valid (HIGH, LOW, or at some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from High-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS. 13. A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device. 14. For command/address input slew rate 1.0 V/ns. 15. For command/address input slew rate 0.5 V/ns and 1.0 V/ns 16. For CK & /CK slew rate 1.0 V/ns (single-ended) 17. These parameters guarantee device timing, but they are not necessarily tested on each device. They may be guaranteed by device design or tester correlation. 18. Slew Rate is measured between VOH(ac) and VOL(ac). 19. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter (tJIT(HP)) of the clock source, and less the half period jitter due to crosstalk (tJIT(crosstalk)) into the clock traces.
Rev. 1.0 / June 2007
11
11
200pin DDR SDRAM SO-DIMMs
20.tQH = tHP - tQHS, where: tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS accounts for 1) The pulse duration distortion of on-chip clock circuits; and 2) The worst case push--out of DQS on one transition followed by the worst case pull--in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers. 21. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given cycle. 22. tDAL = (tWR/tCK) + (tRP/tCK) For each of the terms above, if not already an integer, round to the next highest integer. Example: For DDR266B at CL=2.5 and tCK=7.5 ns tDAL = ((15 ns / 7.5 ns) + (20 ns / 7.5 ns)) clocks = ((2) + (3)) clocks = 5 clocks 23. In all circumstances, tXSNR can be satisfied using tXSNR = tRFCmin + 1*tCK 24. The only time that the clock frequency is allowed to change is during self-refresh mode. 25. If refresh timing or tDS/tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
Rev. 1.0 / June 2007
12
11
200pin DDR SDRAM SO-DIMMs SYSTEM CHARACTERISTICS CONDITIONS for DDR SDRAMS
The following tables are described specification parameters that required in systems using DDR devices to ensure proper performannce. These characteristics are for system simulation purposes and are guaranteed by design.
Input Slew Rate for DQ/DM/DQS
AC CHARACTERISTICS PARAMETER DQ/DM/DQS input slew rate measured between VIH(DC), VIL(DC) and VIL(DC), VIH(DC) Symbol DCSLEW min 0.5
(Table a.) DDR333 min 0.5 max 4.0 DDR266 min 0.5 max 4.0 DDR200 min 0.5 max 4.0 UNIT Note
DDR400 max 4.0
V/ns
1,12
Address & Control Input Setup & Hold Time Derating (Table b.)
Input Slew Rate 0.5 V/ns 0.4 V/ns 0.3 V/ns Delta tIS 0 +50 +100 (Table c.) Delta tDH 0 0 0 UNIT ps ps ps Note 11 11 11 (Table d.) Note 10 10 10 Delta tIH 0 0 0 UNIT ps ps ps Note 9 9 9
DQ & DM Input Setup & Hold Time Derating
Input Slew Rate 0.5 V/ns 0.4 V/ns 0.3 V/ns Delta tDS 0 +75 +150
DQ & DM Input Setup & Hold Time Derating for Rise/Fall Delta Slew Rate
Input Slew Rate 0.0 ns/V 0.25 ns/V 0.5 ns/V Delta tDS 0 +50 +100 Delta tDH 0 +50 +100 (Table e.) Maximum (V/ns) 4.5 4.5 UNIT ps ps ps
Output Slew Rate Characteristics (for x4, x8 Devices)
Slew Rate Characteristic Pullup Slew Rate Pulldown Slew Rate Typical Range (V/ ns) 1.2 - 2.5 1.2 - 2.5
Minimum (V/ns) 1.0 1.0
Note 1,3,4,6,7,8 2,3,4,6,7,8
Output Slew Rate Characteristics (for x16 Device) (Table f.)
Slew Rate Characteristic Pullup Slew Rate Pulldown Slew Rate Typical Range (V/ ns) 1.2 - 2.5 1.2 - 2.5 Minimum (V/ns) 1.0 1.0 (Table g.) DDR266B min max DDR200 min 0.71 max 1.4 Note 5,12 Maximum (V/ns) 4.5 4.5 Note 1,3,4,6,7,8 2,3,4,6,7,8
Output Slew Rate Matching Ratio Characteristics
Slew Rate Characteristic Parameter Output Slew Rate Matching Ratio (Pullup to Pulldown) DDR266A min max -
Rev. 1.0 / June 2007
13
11
200pin DDR SDRAM SO-DIMMs
Notes: 1. Pullup slew rate is characterized under the test conditions as shown in below Figure.
Test Point Output (VOUT) 50 VSSQ
Figure: Pullup Slew rate
2. Pulldown slew rate is measured under the test conditions shown in below Figure.
VDDQ
Output (VOUT)
50
Test Point
Figure: Pulldown Slew rate
3. Pullup slew rate is measured between (VDDQ/2 - 320 mV 250mV) Pulldown slew rate is measured between (VDDQ/2 + 320mV 250mV) Pullup and Pulldown slew rate conditions are to be met for any pattern of data, including all outputs switching and only one output switching. Example: For typical slew, DQ0 is switching For minimum slew rate, all DQ bits are switching worst case pattern For maximum slew rate, only one DQ is switching from either high to low, or low to high. The remaining DQ bits remain the same as for previous state. 4. Evaluation conditions Typical: 25 oC (Ambient), VDDQ = nominal, typical process Minimum: 70 oC (Ambient), VDDQ = minimum, slow-slow process Maximum: 0 oC (Ambient), VDDQ = Maximum, fast-fast process 5. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process variation. 6. Verified under typical conditions for qualification purposes. 7. TSOP-II package devices only. 8. Only intended for operation up to 256 Mbps per pin. 9. A derating factor will be used to increase tIS and tIH in the case where the input slew rate is below 0.5 V/ns as shown in Table b. The Input slew rate is based on the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), similarly for rising transitions. 10. A derating factor will be used to increase tDS and tDH in the case where DQ, DM, and DQS slew rates differ, as shown in Tables c & d. Input slew rate is based on the larger of AC-AC delta rise, fall rate and DC-DC delta rise, fall rate. Input slew rate is based on the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), similarly for rising transitions. The delta rise/fall rate is calculated as: {1/(Slew Rate1)} - {1/(slew Rate2)} For example: If Slew Rate 1 is 0.5 V/ns and Slew Rate 2 is 0.4 V/ns, then the delta rise, fall rate is -0.5 ns/V. Using the table given, this would result in the need for an increase in tDS and tDH of 100ps. 11. Table c is used to increase tDS and tDH in the case where the I/O slew rate is below 0.5 V/ns. The I/O slew rate is based on the lesser of the AC-AC slew rate and the DC-DC slew rate. The input slew rate is based on the lesser of the slew rates determined by either VIH(ac) to VIL(AC) or VIH(DC) to VIL(DC), and similarly for rising transitions. 12. DQS, DM, and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal transitions through the DC region must be monotonic.
Rev. 1.0 / June 2007
14
11
200pin DDR SDRAM SO-DIMMs SIMPLIFIED COMMAND TRUTH TABLE
Command Extended Mode Register Set Mode Register Set Device Deselect No Operation Bank Active Read Read with Autoprecharge Write Write with Autoprecharge Precharge All Banks Precharge selected Bank Read Burst Stop Auto Refresh Entry Self Refresh Exit Entry Exit Entry Exit CKEn-1 H H H H H H H H H H L H L H L CKEn X X X X X X X X H L H L H L H /CS L L H L L L L L L L L H L H L H L H L /RAS L L X H L H H L H L L X H X H X H X V X /CAS L L X H H L L H H L L X H X H X H X V /WE L L X H H H L L L H H X H X H X H X V X X X CA CA X RA L H L H H L X X
ADDR
A10/AP OP code OP code X
BA
Note 1,2 1,2 1
V V V X V
1 1 1,3 1 1,4 1,5 1 1 1 1 1 1 1 1 1 1 1 1
Precharge Power Down Mode
Active Power Down Mode
( H=Logic High Level, L=Logic Low Level, X=Don't Care, V=Valid Data Input, OP Code=Operand Code, NOP=No Operation ) Notes : 1. DM states are Don't Care. Refer to below Write Mask Truth Table. 2. OP Code(Operand Code) consists of A0~A12 and BA0~BA1 used for Mode Registering during Extended MRS or MRS. Before entering Mode Register Set mode, all banks must be in a precharge state and MRS command can be issued after tRP period from Precharge command. 3. If a Read with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented to activated bank until CK(n+BL/2+tRP). 4. If a Write with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented to activated bank until CK(n+BL/2+1+tWR+tRP). Write Recovery Time(tWR) is needed to guarantee that the last data has been completely written. 5. If A10/AP is High when Row Precharge command being issued, BA0/BA1 are ignored and all banks are selected to be precharged.
WRITE MASK TRUTH TABLE
Function Data Write Data-In Mask Note: 1. Write Mask command masks burst write data with reference to LDQS/UDQS(Data Strobes) and it is not related with read data. In case of x16 data I/O, LDM and UDM control lower byte(DQ0~7) and Upper byte(DQ8~15) respectively. CKEn-1 H H CKEn X X /CS, /RAS, /CAS, /WE X X DM L H ADDR A10/AP X X BA Note 1 1
Rev. 1.0 / June 2007
15
11
200pin DDR SDRAM SO-DIMMs PACKAGE DIMENSIONS 1GB, 128M x 64 Unbuffered SO-DIMM: HYMD512M646D[L]FP8
2.00 mm Component Keepout Area
Front
Unit:
2.00 mm
Millimeters Inches
31.75 mm 20.00 mm
1
39
41
199
Back
67.60 mm 3.8mm MAX.
Side
1.1mm MAX.
Rev. 1.0 / June 2007
16
11
200pin DDR SDRAM SO-DIMMs REVISION HISTORY
Revision 1.0 History First Version Release Date June 2007 Remark
Rev. 1.0 / June 2007
17


▲Up To Search▲   

 
Price & Availability of HYMD512M646DFP8-D43

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X